研究報告

利用混沉降物的收集以推估林木對空氣污染物的截留能力

劉恩好 劉瓊霞

【摘要】本研究目的為利用混沉降物的分析以推估都會區不同種類的鄉土綠化樹種對空氣污染物的截留能力。在台中縣立自然科學博物館的植物園內，選取海岸林區的水黃皮、季風雨林區的茄苳、南部低海拔區的苦楝及相思、中部低海拔區的台灣欒樹、無患子及楓香、北部低海拔區的紅楠及樟樹等九種樹種為標本木，分別在其樹幹及樹冠下架設幹流水及穿落水的取樣裝置，且於園區內的空曠地架設林外雨取樣裝置。雨水收集從2006年5月開始至2006年7月結束，以場雨為單元收集水樣。此試驗期間的穿落水分析結果顯示，相思樹及苦楝對空氣中NOx的截留量最高，分別為3.14 kg ha\(^{-1}\) 3months\(^{-1}\)及2.54 kg ha\(^{-1}\) 3months\(^{-1}\)；而台灣欒樹、紅楠、楓香則有著較低的吸收作用，吸收量分別為1.19、1.19及0.33 kg ha\(^{-1}\) 3months\(^{-1}\)。雖然樹冠對NOx不管是截留或者吸收都可以幫助降低空氣中污染物的濃度，然而以本試驗選擇的樹種而言，對空氣中NOx的總減量還是相思及苦楝較多。對大氣中SO\(_2\)的截留方面，則以水黃皮及無患子較佳，分別為3.08及2.73 kg ha\(^{-1}\) 3months\(^{-1}\)；較低則是楓香及紅楠，分別為0.94及0.38 kg ha\(^{-1}\) 3months\(^{-1}\)。

【關鍵詞】空氣污染、穿落水、幹流水、吸收、截留

Research paper

Assessment the Ability of Trees to Intercept Pollutants by Using Bulk Deposition

En-u Liu Chiung-pin Liu

【Abstract】The objectives of this study were to compare the ability of trees to remove pollutants from the air. Bulk precipitation, throughfall, and stemflow were collected from March 2006 to October 2006 in the botanical garden of the National Museum of Natural Science. Poonga-Oil tree (Pongamia pinnata) of Coral Atoll, Red cedar (Bischofia javanica) of Monsoon Rainforest, China Berry-tree (Melia azedarach), Taiwan Acacia (Acacia confusa) of Southern Lowlands, Flamegold (Koelreuteria formosana), Chinese Soapberry (Sapindus mukorossi), Fragrant Maple (Liquidambar formosana) of Central Lowlands, and Red Nanmu

1. 本研究為國科會/環保署『空氣污染防治科技合作研究計畫』(NSC 95-EPA-Z-005-002)之部分成果，承蒙環保署經費補助，國立自然科學博物館提供試驗地，謹此致謝
2. 國立中興大學森林系研究生、副教授 (通訊作者)

Graduate Student, Associate Professor (Corresponding Author), Department of Forestry, National Chung Hsing University, Taichung, Taiwan.
(Machilus thunbergii), Camphor tree (Cinnamomum camphora) of Northern Lowlands were selected as sampling trees. Taiwan Acacia and China Berry-tree had higher net NOx interception and were 3.14 and 2.54 kg ha⁻¹ 3months⁻¹, respectively. The net NOx absorption of Flamegold, Red Nanmu and Fragrant Maple were 1.19, 1.19 and 0.33 kg ha⁻¹ 3months⁻¹, respectively. We concluded that Taiwan Acacia and China Berry-tree had higher NOx reducing ability among the nine kinds of sampling trees. In terms of SO₂ interception, Poonga-Oil tree and Chinese Soapberry had higher net SO₂ interception and were 3.08 and 2.73 kg ha⁻¹ 3months⁻¹, respectively. However, Fragrant Maple and Red Nanmu had lower interception and were 0.94 and 0.83 kg ha⁻¹ 3months⁻¹, respectively.

【Key words】Air pollution, Throughfall, Stemflow, Interception, Absorption

一、前言

根據臺灣環保署在 93 年度的環境白皮書指出，在過去四、五十年來，隨社會及經濟的發展，我國環境面臨或多或少的變遷及衝擊，地狹人稠的自然條件限制，以及各種經社活動急遽擴張下，使得污染源密度不斷提高，環境負荷日益沉重（環保署，2004）。SO₂ 及 NOx 在大氣中以氣體方式存在，或者於大氣中進行一系列的化學反應後，形成硫酸鹽、硝酸鹽等粒狀化合物，最後這些物質會藉由乾、濕沉降的方式降落至地表。在此同時，林木即可淨化空氣及降低空氣污染（DeSanto et al., 1976; Dochinger, 1980; Nowak, 1994; Ould-Dada and Baghini, 2001）。

過去在英國的研究顯示，林地吸收有難氣體 SO₂ 的量，要高出無林地 5-10 倍；日本以柳杉林作試驗結果也顯示，每 1000 g 的柳杉乾葉，每月可吸收 3 g 的 SO₂，如以柳杉林每公頃乾葉量為 20 ton 計，則每公頃每月可吸收約 60 kg 的 SO₂；俄羅斯的松林每天可自 1 m² 的大氣中吸收 20 mg 的 SO₂（路德信，1993）。森林也有附著或過濾大氣中塵埃微粒的作用，隨氣流移動的塵埃微粒，遇樹木會受到阻截，沉降在樹葉、枝條及樹體上，根據研究顯示，一公頃的刺槐林每年可截留塵埃微粒 9.98 ton，加楊林 10.50 ton 及榆樹林 16.13 ton（董成文等，1992）。

空氣污染物排入大氣後，一部分受重力牽引在源頭附近掉落地面，或者經由長程輸送擴散至數百公里之遠處（Lin et al., 2005）。林木能夠淨化空氣的功能之一，在於能夠截留污染物，即在不降雨時，林冠會截留大氣沉降中的懸浮微粒，而當雨水通過林木的樹冠後，經由淋洗和沉澱的過程降落至地面。因此，可藉由穿落水和幹流水的收集和分析，而比較出不同林木對空氣污染物截留能力的差異。本研究目的即在都會區現地量測比較不同林木可截留吸收淨化多少主要的空氣污染物。

二、材料與方法

(一) 樹樣選擇

以位於台中市區的國立自然科學博物館的植物園為樣區，植物園佔地約 4.5 公頃，以臺灣低海拔具有的特色生態為展示主題。選取海岸林展示區的水黃皮、季風林展示區的茄苳、南部低海拔展示區的苦楝及相思、中部低海拔展示區的台灣欏樹、無患子及楓香、北部低海拔展示區的紅楠及樟樹等九種樹種作為樣木，各樣種隨機挑選三株為樣木。

(二) 水樣的種類及收集

水樣收集期間為 2006 年 5 月至 2006 年 7 月，共收集 5 場降雨以作評估林木對空氣污染物截留量的依據，茲將水樣收集裝置及取樣方式介紹如下：

1. 林外雨

在植物園中央的熱帶雨林溫室後方的空曠地上設置一組雨水收集裝置，其由三個直徑 20 cm 的漏斗承接雨水，再以黑色的塑膠管將雨
水共同收集至20公升的集水桶，雨水收集器为露天开口式的，故所收集到的水样为为此场次降雨的湿沉降及前场次降雨间隔期间，进入收集桶的部份乾沉降即统称湿沉降（bulk deposition）。以場雨為收集单位，若降雨量小於5mm则不收集，且每場雨間至少間隔6小时，於每場降雨後，測量水量，收集水样並迅速带回实验室分析。

2. 幹流水

在每株样本的樹幹上緊密纏繞黑色塑膠软管3-5圈並於間隔適當的長度，鑿出3個長約2cm、寬1cm的孔洞，以攔截經由樹幹流入地表的降水，最後將黑色軟管導入20公升的集水桶內。以場雨為收集单位，於每場降雨後，測量水量，收集水樣並迅速带回實驗室分析。

3. 蜕落水

於每株样本林冠下架設三個穿落水取樣裝置，為避免集中在同一方向，將取樣裝置放置於不同方向。取樣裝置由一個直徑20cm的漏斗承接經由樹冠層進入林地的雨水，再以黑色的塑膠管将穿落水收集至10公升的集水桶内，為防止昆蟲及枯枝落葉掉落阻塞塑膠管，每一漏斗口均放置一個塑膠濾網。於林外雨水及幹流水一樣，以場雨為收集单位，於每場降雨後，測量水量，收集水樣並迅速带回實驗室分析。

(三) 植體的採集及分析

每季於樣木設置穿落水取樣裝置的上方採集樹葉及枝條，攜回實驗室後，樣本烘乾、磨成粉末後，再以網目為0.149mm (mesh No. 100)的標準篩過篩，過篩後的粉末利用元素分析儀 (CHNOS Elemental Analyzer, vario EL, Germany) 分析植體內C、N、S及H的含量。

(四) 水樣分析

pH、總懸浮固體物（total suspended solid，TDS）、無機陽離子（Na, K, Ca, Mg, NH₄）及無機陰離子（F, Cl, NO₃, NO₂, SO₄）和HCO₃等之分析流程與方法均按照APHA (American Public Health Association) (1995) 所訂之標準流程並參考金恆鐮和楊炳炎 (1984) 及劉wis質和金恆鐮 (1996) 之報告。陰陽離子的分析是將水樣通過0.45μm濾膜 (Gelman-science GN-6 grid 0.45μm sterilized filter paper) 後，以離子層析儀 (Dionex 120, USA) 分析之。II(C)02則是將水樣以0.01M硫酸滴定至pH 4.52後定量之。

(五) 資料的處理及分析

1. 以體積加權平均表示離子濃度

水樣內電導度、TDS及離子濃度是以體積加權平均表示 (volume-weighted mean, VWM) 其計算式如下：

\[
VWM = \sum CiVi / \sum Vi
\]

其中Ci表示第i場降雨所測得的電導度、TDS及離子濃度而Vi為第i場降雨的集水桶內水量，總降水量、總穿落水量及總幹流水量是2006年5月初至2006年7月底試驗期間的水量總和。

2. 離子濃度增加係數

離子濃度增加係數 (enrichment ratio) 為穿落水或幹流水的離子成分濃度經加權平均後的數值與降雪的離子成分濃度的比值。

3. 離子輸入量

由於水樣收集的只有5場次，無法將降水量及幹流量建立回歸方程式，來計算每株樣木實際的幹流量而且幹流量在闊葉樹及針葉樹林的貢獻量均相當低，一般低於降水量的5% (Parker, 1983; Crockford and Richardson, 1990; Cavelier et al., 1997)，所以通常忽略不計。因此不同離子的輸入量常以淨穿落量來表示 (即穿落水輸入量減去降雪輸入量)，而穿落水輸入量為穿落量乘以該場穿落水離子成分濃度，以得知每場穿落量的各離子含量，再換算成三個月試驗期間的每公頃離子輸入量。

4. 木本對N和S截留量的估計

由於林冠可有效截留懸浮物粒 (包括N和S構成的粒狀污染物)，在降雨時再由雨水沖洗而以穿落水形式到達林地，故本研究以淨穿落量法 (即穿落水中元素輸入量與降水中元素含
利用混沉降物的收集以推估林木對空氣污染物的截留能力

量的差值) 來估算不同樹種在冠的 N 和 S 截留

三、結果
（一）雨水
2006年5月至7月底共收集5場降水，雨水經體積加權平均後所得 pH 值為5.52，TDS
為5.22 mg L⁻¹，陽離子 (Na、NH₄、K、Mg、Ca) 濃度分別為 27.91、127.49、13.13、8.51、
30.01 μeq L⁻¹；陰離子 (F、Cl、NO₂、NO₃、SO₄、HCO₃) 濃度分別為 16.19、27.67、2.69、
59.81、80.80 及 47.90 μeq L⁻¹。

（二）穿落水
雨水在台中科博管植物園經過水黃皮、茄
苺、苦楝、相思、台灣欒樹、無患子、香、
紅楠及樟樹等九種標本木後，pH 都提高到
6-7，而穿落水中主要的陽離子為 K、Ca、
Mg，其中以 K 濃度增加最多，增加係數為
8.81-25.79，其次為 Mg 及 Ca 離子，其濃度增
加係數分別為 2.46-14.95 及 3.07-12.19，顯示
K、Ca、Mg 於林冠中被置換出來；在陰離子
方面，以 Cl 及 HCO₃ 为主要的成分離子，其離
子增加係數分別為 1.31-4.10 及 1.52-2.66（表1）。

在樹種方面，相思及苦楝在 pH 值、TDS
及 Na、K、Ca 等陽離子和 Cl、NO₂、NO₃ 等
陰離子濃度增加係數顯著地高於其他樹種，然
而楓香及紅楠的 pH 值、TDS 及陰離子濃度
的增加係數顯著較低，且其 NH₃、NO₂ 及 NO₃
離子的增加係數甚至小於 1，顯示其林冠層對
大氣中的氮氧化物有淨吸收作用（表1）。

表1．台中科博管植物園內不同樹種穿落水的 pH 值及總懸浮固體物 (TDS) 和各成分離子濃度的增
多係數（2006年5月至2006年7月）

<table>
<thead>
<tr>
<th></th>
<th>水黃皮</th>
<th>茄苺</th>
<th>苦楝</th>
<th>相思樹</th>
<th>台灣欒樹</th>
<th>無患子</th>
<th>楓香</th>
<th>紅楠</th>
<th>樟樹</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS</td>
<td>2.43</td>
<td>2.41</td>
<td>2.66</td>
<td>3.04</td>
<td>2.32</td>
<td>2.15</td>
<td>1.62</td>
<td>1.67</td>
<td>1.63</td>
</tr>
<tr>
<td>Na</td>
<td>1.68</td>
<td>1.77</td>
<td>1.69</td>
<td>2.00</td>
<td>1.59</td>
<td>1.68</td>
<td>0.96</td>
<td>1.56</td>
<td>1.40</td>
</tr>
<tr>
<td>NH₃</td>
<td>0.88</td>
<td>0.65</td>
<td>2.24</td>
<td>1.82</td>
<td>1.18</td>
<td>0.44</td>
<td>0.93</td>
<td>0.55</td>
<td>0.72</td>
</tr>
<tr>
<td>Mg</td>
<td>7.69</td>
<td>10.78</td>
<td>7.26</td>
<td>14.95</td>
<td>5.50</td>
<td>7.31</td>
<td>2.46</td>
<td>4.42</td>
<td>3.58</td>
</tr>
<tr>
<td>Ca</td>
<td>10.68</td>
<td>9.64</td>
<td>7.80</td>
<td>12.19</td>
<td>5.60</td>
<td>7.86</td>
<td>3.07</td>
<td>4.43</td>
<td>4.03</td>
</tr>
<tr>
<td>Cl</td>
<td>1.79</td>
<td>2.07</td>
<td>2.42</td>
<td>4.10</td>
<td>1.85</td>
<td>1.78</td>
<td>1.31</td>
<td>1.66</td>
<td>1.53</td>
</tr>
<tr>
<td>NO₂</td>
<td>1.43</td>
<td>1.64</td>
<td>1.86</td>
<td>3.06</td>
<td>0.63</td>
<td>1.18</td>
<td>0.79</td>
<td>1.00</td>
<td>1.31</td>
</tr>
<tr>
<td>NO₃</td>
<td>1.00</td>
<td>1.29</td>
<td>1.26</td>
<td>1.70</td>
<td>0.73</td>
<td>1.00</td>
<td>0.96</td>
<td>0.79</td>
<td>0.95</td>
</tr>
<tr>
<td>SO₄</td>
<td>1.69</td>
<td>1.83</td>
<td>1.59</td>
<td>1.76</td>
<td>1.62</td>
<td>1.79</td>
<td>1.27</td>
<td>1.29</td>
<td>1.37</td>
</tr>
<tr>
<td>HCO₃</td>
<td>2.60</td>
<td>2.17</td>
<td>2.66</td>
<td>2.08</td>
<td>2.28</td>
<td>2.02</td>
<td>1.76</td>
<td>1.52</td>
<td>1.57</td>
</tr>
</tbody>
</table>

(1) 表示使用最小顯著差異 (LSD) 分析，同列數值後之英文字母不同，表示差異顯著 (P<0.05)
(1) Values in the same row with different letters are significantly different at 5% significant level by
Least Significant Difference (LSD)

（三）幹流水
在台中科博管植物園的九種標本木的幹流水
中，除了相思的 pH 值為 5.96 外其他樹種的 pH
值都提高至 6-7。在幹流水中的主要的陽離子也
是 K、Ca、Mg，其中也是以 K 濃度增加最多，
尤其是台灣楓樹的 K 離子增多係數甚至高達
106.94；陰離子方面，以 HCO₃⁻、SO₄²⁻ 及 Cl⁻ 為
主，其離子增多係數分別為 3.02-6.01、1.22-3.36
及 1.43-2.62 (表 2)。在樹種方面，Na、NH₄⁺ 及
Cl⁻離子濃度增多係數在相思幹流水中最高，而
K、Mg、Ca 及 HCO₃⁻ 在茄苳最高，NO₂⁻、NO₃⁻
及 SO₄²⁻ 則是楓香最高，而不僅於楓香、樟樹及
紅楠等的樹冠層對氮氧化物有淨吸收效應，樟
樹、台灣楓樹的樹幹也有淨吸收效應，樟樹及
台灣楓樹對 NO₂⁻ 及 NO₃⁻ 的離子增加係數也
小於 1，其 NO₂⁻ 離子濃度增加係數分別為 0.79
及 0.33 而 NO₃⁻ 增加係數分別為 0.74 及 0.21 (表
(2)

表 2. 台中科博館植物園區內不同樹種幹流水的 pH 值及總懸浮固體物 (TDS) 和各成分離子濃度的增
多係數 (2006 年 5 月至 2006 年 7 月)

Table 2. pH value，total suspended solid (TDS) and ionic enrichment ratio of stemflow from trees in
the botanical garden of the National Museum of Natural Science (May to July 2006)

<table>
<thead>
<tr>
<th></th>
<th>水黃皮</th>
<th>茄 苳</th>
<th>苦 棟</th>
<th>相思樹</th>
<th>台灣楓樹</th>
<th>無患子</th>
<th>楓 香</th>
<th>紅 檀</th>
<th>楓 樹</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6.23</td>
<td>6.75</td>
<td>6.18</td>
<td>5.96</td>
<td>6.12</td>
<td>6.31</td>
<td>6.34</td>
<td>6.38</td>
<td>6.56</td>
</tr>
<tr>
<td>TDS</td>
<td>3.87</td>
<td>4.68</td>
<td>3.13</td>
<td>4.93</td>
<td>4.55</td>
<td>4.04</td>
<td>4.53</td>
<td>3.67</td>
<td>3.48</td>
</tr>
<tr>
<td>Na</td>
<td>1.20</td>
<td>0.74</td>
<td>1.23</td>
<td>1.63</td>
<td>1.88</td>
<td>1.13</td>
<td>1.61</td>
<td>1.52</td>
<td>0.95</td>
</tr>
<tr>
<td>NH₄⁺</td>
<td>9.82</td>
<td>1.10</td>
<td>5.16</td>
<td>14.58</td>
<td>2.34</td>
<td>7.75</td>
<td>9.69</td>
<td>3.27</td>
<td>1.31</td>
</tr>
<tr>
<td>K</td>
<td>58.29</td>
<td>79.60</td>
<td>27.91</td>
<td>62.38</td>
<td>106.94</td>
<td>75.00</td>
<td>53.68</td>
<td>68.92</td>
<td>61.42</td>
</tr>
<tr>
<td>Mg</td>
<td>5.55</td>
<td>35.56</td>
<td>7.19</td>
<td>15.36</td>
<td>5.76</td>
<td>5.22</td>
<td>12.51</td>
<td>6.23</td>
<td>8.52</td>
</tr>
<tr>
<td>Ca</td>
<td>4.38</td>
<td>15.57</td>
<td>8.66</td>
<td>9.38</td>
<td>7.66</td>
<td>4.11</td>
<td>13.19</td>
<td>12.74</td>
<td>7.90</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>2.46</td>
<td>2.62</td>
<td>1.54</td>
<td>8.15</td>
<td>2.33</td>
<td>2.00</td>
<td>2.11</td>
<td>1.54</td>
<td>1.43</td>
</tr>
<tr>
<td>NO₂⁻</td>
<td>1.40</td>
<td>0.52</td>
<td>1.12</td>
<td>1.41</td>
<td>0.79</td>
<td>1.85</td>
<td>2.34</td>
<td>2.10</td>
<td>0.33</td>
</tr>
<tr>
<td>NO₃⁻</td>
<td>1.58</td>
<td>1.10</td>
<td>0.82</td>
<td>1.96</td>
<td>0.74</td>
<td>1.25</td>
<td>2.85</td>
<td>1.59</td>
<td>0.21</td>
</tr>
<tr>
<td>SO₄²⁻</td>
<td>2.56</td>
<td>1.57</td>
<td>1.56</td>
<td>2.06</td>
<td>1.75</td>
<td>2.40</td>
<td>3.36</td>
<td>1.63</td>
<td>1.22</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>3.30</td>
<td>6.01</td>
<td>3.02</td>
<td>3.27</td>
<td>5.08</td>
<td>3.83</td>
<td>4.30</td>
<td>4.24</td>
<td>4.54</td>
</tr>
</tbody>
</table>

(1) 字母標記如表 1所示
(2) Letters as denoted in Table 1

(四) 離子輸入量

雨水經過相思樹冠層的 Na、K、Mg、
Ca 等 4 種陽離子輸入量最多，分別為 4.03、
18.81、2.35 及 3.86 kg ha⁻¹ 3months⁻¹，水黃皮
及苦楝對 4 種陽離子的輸入量亦次之，水黃皮的
輸入量分別為 3.89、13.60、1.34 及 3.94 kg ha⁻¹
3months⁻¹，而苦楝為 3.76、17.82、1.22 及 2.72
kg ha⁻¹ 3months⁻¹ (表 3)。九種綠化樹種對 Cl⁻、
NO₂⁻、NO₃⁻、SO₄²⁻ 及 HCO₃⁻，這五種陰離子的輸入
量也有相同的趨勢，相思樹對五種陰離子的輸
入量仍最高，分別為 18.00、5.20、4.94、7.05
及 27.61 kg ha⁻¹ 3months⁻¹，其次為苦楝，其輸
入量分別為 10.16、2.92、2.99、7.42 及 53.07
kg ha⁻¹ 3months⁻¹，最低者為楓香及紅楠，且雨
水經過台灣楓樹、紅楠及楓香等樹冠後 NH₄⁺、
NO₂⁻ 及 NO₃⁻ 的淨輸入量呈現負值（表 3）。
表 3. 台中科博館植物園區內不同樹種林冠下不同成分離子的淨輸入量
(2006年5月至2006年7月)

Table 3. Net input of major ions under canopies of trees in the botanical garden of the National Museum of Natural Science (May to July 2006)

<table>
<thead>
<tr>
<th></th>
<th>水黃皮</th>
<th>茄 茸</th>
<th>苦 棟</th>
<th>相思樹</th>
<th>台灣欉樹</th>
<th>無患子</th>
<th>楓 香</th>
<th>紅 檗</th>
<th>樟 樹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>3.89</td>
<td>2.70</td>
<td>3.76</td>
<td>4.03</td>
<td>1.83</td>
<td>2.96</td>
<td>-0.20</td>
<td>1.59</td>
<td>1.47</td>
</tr>
<tr>
<td>NH₄</td>
<td>0.00</td>
<td>-0.40</td>
<td>1.25</td>
<td>0.57</td>
<td>-0.02</td>
<td>-0.52</td>
<td>-0.08</td>
<td>-0.49</td>
<td>-0.31</td>
</tr>
<tr>
<td>K</td>
<td>13.60</td>
<td>8.84</td>
<td>17.82</td>
<td>18.81</td>
<td>15.40</td>
<td>7.85</td>
<td>9.23</td>
<td>5.56</td>
<td>6.10</td>
</tr>
<tr>
<td>Mg</td>
<td>1.34</td>
<td>1.55</td>
<td>1.22</td>
<td>2.35</td>
<td>0.72</td>
<td>1.15</td>
<td>0.27</td>
<td>0.52</td>
<td>0.44</td>
</tr>
<tr>
<td>Ca</td>
<td>3.94</td>
<td>2.76</td>
<td>2.72</td>
<td>3.86</td>
<td>1.49</td>
<td>2.57</td>
<td>0.78</td>
<td>1.06</td>
<td>1.06</td>
</tr>
<tr>
<td>Cl</td>
<td>6.14</td>
<td>5.23</td>
<td>10.16</td>
<td>18.00</td>
<td>3.89</td>
<td>4.65</td>
<td>1.91</td>
<td>2.72</td>
<td>2.84</td>
</tr>
<tr>
<td>NO₂</td>
<td>1.72</td>
<td>1.30</td>
<td>2.92</td>
<td>5.20</td>
<td>-1.31</td>
<td>0.72</td>
<td>-0.56</td>
<td>-0.46</td>
<td>0.70</td>
</tr>
<tr>
<td>NO₃</td>
<td>0.92</td>
<td>1.29</td>
<td>2.99</td>
<td>4.94</td>
<td>-3.39</td>
<td>-0.04</td>
<td>-0.45</td>
<td>-2.98</td>
<td>-1.17</td>
</tr>
<tr>
<td>SO₄</td>
<td>9.23</td>
<td>6.76</td>
<td>7.42</td>
<td>7.05</td>
<td>4.50</td>
<td>8.20</td>
<td>2.81</td>
<td>1.14</td>
<td>3.15</td>
</tr>
<tr>
<td>HCO₃</td>
<td>52.37</td>
<td>26.72</td>
<td>53.07</td>
<td>27.61</td>
<td>29.14</td>
<td>28.44</td>
<td>19.91</td>
<td>8.61</td>
<td>14.00</td>
</tr>
</tbody>
</table>

(五) 林木對 N 和 S 的截留量

分析結果顯示，相思樹及苦楝會截留空氣中 NOₓ，截留量分別為 3.14 kg ha⁻¹ 3months⁻¹ 及 2.54 kg ha⁻¹ 3months⁻¹，而台灣欉樹、紅欉、

楓香則有淨吸收作用，分別為 1.19、1.19 及 1.09 kg ha⁻¹ 3months⁻¹，林冠對 NOₓ 的截留作用

可以幫助降低空氣中污染物的濃度，因此可以推測空氣中 NOₓ 的總減少量即為截留存

量及吸收量的總和，所以對空氣中 NOₓ 的總

減量還是相思及苦楝較多，分別為 3.14 ＊ 2.54 kg ha⁻¹ 3months⁻¹，而楓香及樟樹對空氣中 NOₓ

的總減量最低，分別為 0.33 ＊ 0.29 kg ha⁻¹ 3months⁻¹ (表 4)。水黃皮及無患子的 SO₄ 截留

量最高，分別為 3.08 ＊ 2.73 kg ha⁻¹ 3months⁻¹，

最低則是楓香及紅欉，分別為 0.94 ＊ 0.38 kg ha⁻¹ 3months⁻¹ (表 5)。

表 4. 台中科博館植物園區內不同樹種林冠對大氣中 NO₂ 、NO₃ 及 NH₄ 的總減量
(2006年5月至2006年7月)

Table 4. Atmospheric NO₂ 、NO₃ and NH₄ reducing ability of tree canopies in the botanical garden of the National Museum of Natural Science (May to July 2006)

<table>
<thead>
<tr>
<th></th>
<th>水黃皮</th>
<th>茄 茸</th>
<th>苦 棟</th>
<th>相思樹</th>
<th>台灣欉樹</th>
<th>無患子</th>
<th>楓 香</th>
<th>紅 檗</th>
<th>樟 樹</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH₄-N</td>
<td>0.00</td>
<td>(0.31)</td>
<td>0.97</td>
<td>0.44</td>
<td>(0.02)</td>
<td>(0.40)</td>
<td>(0.06)</td>
<td>(0.38)</td>
<td>(0.24)</td>
</tr>
<tr>
<td>NO₂-N</td>
<td>0.52</td>
<td>0.40</td>
<td>0.89</td>
<td>1.58</td>
<td>(0.40)</td>
<td>0.22</td>
<td>(0.17)</td>
<td>(0.14)</td>
<td>0.21</td>
</tr>
<tr>
<td>NO₃-N</td>
<td>0.21</td>
<td>0.29</td>
<td>0.68</td>
<td>1.12</td>
<td>(0.77)</td>
<td>(0.01)</td>
<td>(0.10)</td>
<td>(0.67)</td>
<td>(0.26)</td>
</tr>
<tr>
<td>總 和</td>
<td>0.73</td>
<td>0.38</td>
<td>2.54</td>
<td>3.14</td>
<td>1.19</td>
<td>0.63</td>
<td>0.33</td>
<td>1.19</td>
<td>0.29</td>
</tr>
</tbody>
</table>

注：(*) 表示為負值，即林木的吸收作用

無括號者為正值，即林木的截留作用
表 5. 台中科博館植物園區內不同樹種林冠對大氣中 SO₂的總減少量
(2006年5月至2006年7月)
Table 5. Atmospheric SO₂ reducing ability of tree canopies in the botanical garden of the National Museum of Natural Science (May to July 2006)

<table>
<thead>
<tr>
<th></th>
<th>水黃皮</th>
<th>茄 萸</th>
<th>苦 楝</th>
<th>相思樹</th>
<th>台灣欒樹</th>
<th>無患子</th>
<th>楓 香</th>
<th>紅 楠</th>
<th>樟 樹</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂-S</td>
<td>3.08</td>
<td>2.25</td>
<td>2.47</td>
<td>2.35</td>
<td>1.50</td>
<td>2.73</td>
<td>0.94</td>
<td>0.38</td>
<td>1.05</td>
</tr>
</tbody>
</table>

(六) 植體內元素分析

N 在葉片及枝條的平均成份含量，以相思樹最高佔 3.07%，而含量較低者為楓香及茄蔲
分別佔 1.32%及 1.29%；C 的平均成份含量也

是以相思樹最高佔 52.69%，而含量最低者也
為楓香只佔 46.3%；S 的平均成份含量在各樹
種間統計分析差異不顯著 (表 6)。

表 6. 台中科博館植物園區內不同樹種的 N、C、S 和 H 含量
Table 6. N、C、S and H content of trees in the botanical garden of the National Museum of Natural Science

<table>
<thead>
<tr>
<th>樹 種</th>
<th>部 位</th>
<th>N (%)</th>
<th>C (%)</th>
<th>S (%)</th>
<th>H (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>水黃皮</td>
<td>葉</td>
<td>3.77 b</td>
<td>49.65 b</td>
<td>0.45 b</td>
<td>7.02 b</td>
</tr>
<tr>
<td></td>
<td>枝</td>
<td>2.37 a</td>
<td>45.30 b</td>
<td>0.50 a</td>
<td>6.54 b</td>
</tr>
<tr>
<td>茄 萸</td>
<td>葉</td>
<td>1.63 c</td>
<td>46.90 c</td>
<td>0.50 a</td>
<td>6.06 d</td>
</tr>
<tr>
<td></td>
<td>枝</td>
<td>0.94 c</td>
<td>43.08 c</td>
<td>0.49 a</td>
<td>5.96 d</td>
</tr>
<tr>
<td>苦 楝</td>
<td>葉</td>
<td>3.36 c</td>
<td>47.34 c</td>
<td>0.51 a</td>
<td>6.73 b</td>
</tr>
<tr>
<td></td>
<td>枝</td>
<td>2.08 c</td>
<td>45.97 c</td>
<td>0.49 a</td>
<td>6.42 b</td>
</tr>
<tr>
<td>相思樹</td>
<td>葉</td>
<td>4.42 a</td>
<td>52.69 a</td>
<td>0.41 a</td>
<td>7.44 a</td>
</tr>
<tr>
<td></td>
<td>枝</td>
<td>2.11 a</td>
<td>47.75 a</td>
<td>0.40 a</td>
<td>6.71 a</td>
</tr>
<tr>
<td>台灣欒樹</td>
<td>葉</td>
<td>2.53 d</td>
<td>49.65 b</td>
<td>0.44 c</td>
<td>6.68 b</td>
</tr>
<tr>
<td></td>
<td>枝</td>
<td>0.87 b</td>
<td>47.11 b</td>
<td>0.31 a</td>
<td>6.44 c</td>
</tr>
<tr>
<td>無患子</td>
<td>葉</td>
<td>3.21 c</td>
<td>49.72 b</td>
<td>0.45 a</td>
<td>7.32 a</td>
</tr>
<tr>
<td></td>
<td>枝</td>
<td>1.13 b</td>
<td>45.59 c</td>
<td>0.39 b</td>
<td>6.49 b</td>
</tr>
<tr>
<td>楓 香</td>
<td>葉</td>
<td>2.00 c</td>
<td>46.30 c</td>
<td>0.37 a</td>
<td>6.25 d</td>
</tr>
<tr>
<td></td>
<td>枝</td>
<td>0.64 c</td>
<td>43.95 c</td>
<td>0.33 a</td>
<td>5.83 d</td>
</tr>
<tr>
<td>紅 楠</td>
<td>葉</td>
<td>1.88 c</td>
<td>52.36 b</td>
<td>0.34 a</td>
<td>7.31 a</td>
</tr>
<tr>
<td></td>
<td>枝</td>
<td>0.96 b</td>
<td>51.51 b</td>
<td>0.34 a</td>
<td>6.91 a</td>
</tr>
<tr>
<td>樟 樹</td>
<td>葉</td>
<td>2.51 d</td>
<td>51.84 d</td>
<td>0.41 a</td>
<td>7.44 a</td>
</tr>
<tr>
<td></td>
<td>枝</td>
<td>1.00 b</td>
<td>51.05 b</td>
<td>0.45 a</td>
<td>7.05 a</td>
</tr>
</tbody>
</table>

(1) 表示使用最小顯著差異 (LSD) 分析，同行數值之英文字母不同，表示差異顯著 (P< 0.05)
(1) Values in the same column with different letters are significantly different at 5% significant level by Least Significant Difference (LSD)
四、討論
(一) 雨水 pH 值及離子濃度

一般未經污染的雨水所含的 H 离子可使雨水的 pH 值到達 5.56，故 pH 低於 5.56 的雨水即為酸沉降 (Qu, 1996)。若考慮地理環境及季節變化，會造成降水中的一些陰離子 (如：Na^+、K^+、Ca^{2+}、Mg^{2+}、NH_4^+) 和酸性離子 (如：SO_4^{2-}、NO_3^-、H^+、Cl^-、R-COOH、PO_4^{3-}、CO_3^{2-}) 的濃度發生變化，使雨水的自然背景值介於 4.9-6.5 之間，故取 pH 5.0 為人為污染的酸雨臨界值 (金恆鑑等，2003)。2006 年 5 月至 2006 年 7 月試驗期間雨水的平均 pH 值為 5.74，顯示台中自然科學博物館植物園的雨水在此試驗期間尚未達到酸雨標準。然而酸性沉降已經被發現於台中許多試驗林地: 薛美利 (2000) 探討烏山坑試驗站於 1998 年 2月至 1999年 5 月的降水量，研究結果發現烏山坑地區的雨水 pH 值低於 5.0 的頻率為 40%，而 pH 值低於 4.6 的比率也達到 26.7%；金恆鑑等 (2003) 針對福山試驗林分析該生育期的化學性質，結果發現雨水平均 pH 值為 4.6；而鳳山溪的雨水中 pH 值也低於 5.0 (劉瓊霽和許伯行，1999)，顯示山區雨水已受污染物傳輸影響而有嚴重酸化的現象。然而台中自然科學博物館植物園的雨水在此試驗期間尚未呈現酸化現象，推測與空氣中懸浮微粒溶解在雨水中，和 HCO_3 與結合有關。

福山試驗林、烏山坑地區及自然科學博物館植物園三地的雨水 HCO_3 濃度分別為 13.70、22.92 及 47.90 μeq L^{-1}，可發現自然科學博物館植物園區雨水的 HCO_3 濃度大於其他兩地區的 2.5-4 倍，而薛美利 (2000) 研究發現烏山坑地區雨水中的 pH 值與 HCO_3 濃度呈顯著正相關，且相關係數達 0.611，因此自然科學博物館植物園區雨水中的酸性物質可能已經被 HCO_3 中和，而導致雨水 pH 值仍維持於背景值範圍。

(二) 穿落水及幹流水的 pH 值及離子增加係數

雨水經由林冠到達林地主要有兩種途徑，一種是以穿落水的方式，即雨水從樹葉或枝條滴落的部份，另一種是沿著樹枝及樹幹流下到樹幹周圍的幹流水 (Parker, 1983)。由 2006 年 5 月至 7 月的試驗結果顯示，雨水穿過水黃皮、茄苳、苦楝、相思、臺灣欒樹、無患子、楓香、紅楠及樟樹等九種標本木的樹冠後，pH 都提高至 6.10-6.52，且穿落水中的 K^+、Ca^{2+}、Mg^{2+} 等陽離子濃度大幅度地增加，其中以 K^+ 濃度增加最多，增多係數高達 8.81-25.79，顯示穿落水中的 K^+、Ca^{2+}、Mg^2+ 來自雨水淋洗葉表面的落葉外，K^+、Ca^{2+}、Mg^2+ 也會於林冠中被雨水的 H 离子置換出來 (表 1)，而此林冠的置換作用被認為是闊葉類植物雨水酸性的主要機制之一 (劉瓊霽，2000；金恆鑑等，2003；Cronan and Reiners，1983；Bellot and Escarre，1991；Clark et al.，1998；Zeng et al.，2005；Raffaella et al.，2007)。在穿落水中，除了 K^+、Ca^{2+}、Mg^{2+} 等陽離子濃度大幅地增加，HCO_3 濃度也明顯地增加 (表 1)，其可能也導致於雨水會淋溶或洗葉表面的碳酸氫鹽類，而導致穿落水的 pH 值提高及 K^+、Ca^{2+}、Mg^{2+} 等陽離子濃度增加 (Cronan and Reiner，1983)。

雨水經由樹冠再經過樹幹成為幹流水後，其成分濃度又會不同。在 2006 年 5 月至 7 月的試驗期間，台中科學博物館的九種標本木幹流水的 pH 值也提高至 5.96-6.75，且 TDS 和 Na^+、NH_4^+、K^+、Mg^{2+}、Cl^-、SO_4^{2-} 及 HCO_3^{-} 等離子濃度增加係數皆明顯高於穿落水 (表 1 和表 2)，主要是因為沿著樹幹流下的幹流水除了包含有穿落水原有的成分離子濃度外，和樹幹接觸後的淋溶及洗葉結果會收集到更多的成分離子而提高濃度 (Parker，1983；Edmonds et al.，1991)。然而不同離子在不同樹種其作用結果自然也不同 (劉瓊霽，2000)，且樹幹表面的粗糙度及生物活動都影響幹流水的成分組成，因此幹流水不像穿落水的陰陽離子濃度增多係數都是以相思、苦楝及水黃皮較高，而是不同離子的增多係數最大值都是在不同的樹種 (表 2)。
(三) 林冠對 NH₃、NO₂及 NO₃的留置現象

楓香及紅楠穿落水的 NH₃、NO₂及 NO₃的離子濃度增加係數大於 1（表 1），且 NH₃、NO₂及 NO₃經過兩種樹種林冠的輸入量分載負值（表 3），顯示兩種樹種對 NH₃、NO₂及 NO₃有淨吸收作用，然而 SO₃則無此現象。雖然 S 和 N 都是植物生長必須的大量元素，然而陸地生態系對 S 的供應少有不足問題，而 N 雖佔大氣近 80%的組成，卻是陸地生態系最常見的限制因子（Vitousek and Howarth, 1991），且植物對 NH₃、NO₂及 NO₃等無機氮有透過葉面吸收的特性。此無機氮留置現象亦發現於全球許多針闊葉試驗林（林登秋等，1998；金恆鈞等，2003；Lin and Hamburg, 1992；Brown and Lund, 1994）。

(四) 不同樹種對空氣污染物的截留量

大氣中落塵主要是由 Si、Al、Fe、K、Na、Ca、Mg 等地球元素及 Cu、Pb、Ti 及 Zn 等重金屬元素組成，且落塵表面也會吸附 SO₂及 NOx 等污染氣體所產生的 SO₃、NO₃及 NH₃等離子而共同沉降（孫嘉福等，1996），因此藉由量測綠化樹種對乾沉降的截留量，可用來評估其對大氣中 SO₂及 NOx 等空氣污染物質的移除量。以淨穿落量來估算林冠的乾沉降截留量，對於較不會被林冠吸收的離子如 Na、Cl 及 SO₂的估算，曾被多位研究人員加以利用且證實與直接監測的結果相近（Joslin and Wolfe, 1992；Lindberg and Lovett, 1992；Arthur and Fahey, 1993）。Johnson and Lindberg (1992) 整合 17 個森林 (Integrated Forest Study) 的研究中發現，除了 SO₂外，氟的淨穿落量與直接收集大氣中的氣體與微粒進行分析所估算的乾沉降量亦相同，故本研究利用淨穿落量來估算不同種型綠化樹種對 N 和 S 的截留量。

若以淨穿落法估算林木對大氣中 N 和 S 的截留量，其分析結果為相思及苦楝對空氣中 NOx 截留量最高，水黃皮則對空氣中 SO₂截留量最高，楓香及紅楠對 NOx 及 SO₂的截留量都較低（表 4 及表 5），且對 NOx 截留量最高的相思樹及苦楝，其穿落水的 K、Na、Ca、Mg 等陽離子及 Cl、HCO₃等陰離子的離子濃度增加係數也相對較高（表 1），而對 NOx 及 SO₂截留量較低的楓香及紅楠的各陰陽離子濃度增加係數都較低，顯示離子濃度增加除了葉片的淋溶作用外，最主要還是來自雨水對葉表面落塵的淋洗作用。

植物截留落塵數量的多寡與葉片型態結

構、葉面粗糙度、葉片著生角度，以及樹冠大小、疏密度等因素有關。落塵通常先在葉尖及葉緣沉積（因爲此處的臨界層氣流最不穩定）因此通常比較小的葉片或比較複雜的葉型（即葉緣周長和葉面積比值）較大者往往有較佳的截留落塵的效果（陳英謙及潘素美，1997），且植物對落塵截留能力與葉片量多少成正相關，範基南及李奇倉（1996）的研究顯示，不同樹種的落塵截留率與葉面積指數呈正相關，其 R²為 0.711。相思樹葉形狹長、葉小，苦楝錐齒緣、披針形，葉小，且兩種樹種冠鬱閉（劉志鈞等，1994），因此可能其葉緣周長和葉面積比值及樹冠鬱閉程度較其他樹種大，導致對空氣污染的截留量也較大，相對地，楓香葉面較光滑、葉柄較細，易被風吹抖動，而香楠葉片光滑、上揚（劉志鈞等，1994），因此導致兩種樹種對落塵截留量較低，然而影響不同樹種對 NOx 及 SO₂截留量差異的因素必須再收集更多林木相關資料來釐清。

(五) 林木對 N 和 S 截留量及對 SO₂及 NOx 總減量的相關性

大氣中落塵表面也會吸附 SO₂及 NOx 等污染氣體所產生的 SO₃、NO₃及 NH₃等離子而共同沉降，林冠可有效截留乾沉降，於降雨時再由雨水沖洗而以穿落水的形式達達林地，沉降於林地的 SO₃、NO₃及 NH₃等離子可能會再由根部的吸收回歸樹體內，而林木對大氣中 NOx 的吸收會被正常代謝成胺基酸，其中以 glutamine 及 asparagine 最重要，而 SO₂則被轉變成 glutathione 及 cysteine 為多，以供給林木生理代謝所需（陳英謙及潘素美，1997），因
利用沉降物的收集以推估林木對空氣污染物的截留能力

此推測樣木內 N 及 S 含量應該與林木對大氣中 NOx 及 SO2 的總減量成相關性 (如圖 1 及圖 2)，然而樣木內 N 含量與大氣中 NOx 的總減量的相關性只有 0.381，推測可能氮的淨沈降量會受到林下的灌木及草本植物或微生物吸收而影響，且葉片及枝條平均 N 含量與樹種、林木對環境的適應力、樹齡、林木健康狀態及林木生長週期等都有相關，因此，有待收集更長期的資料，來評估兩者間的相關性。

五、結論

相思及苦楝在 pH 值、TDS 及 Na、K、Ca 等陽離子和 Cl、NO3、NO2 等陰離子在穿落水濃度增加係數明顯地高於其他樹種，尤其是相思樹，顯示其對 NO3、NO2 及 SO2 等截留量較高且林冠對於酸性沉降物質的緩衝能力佳，然而楓香及紅楠的 pH 值、TDS 及陰陽離子濃度的增加係數明顯較低，且 NIL、NO3、NO2 等離子的增加係數甚至小於 1，顯示其樹冠層對大氣中的氯化物有淨吸收作用，且樹冠層對其他陰陽離子截留量或淋溶出的離子含量低。

若以淨穿落水來估算氮及硫在林冠層的乾沉降量，試驗結果顯示相思樹及苦楝會截留空氣中 NOx 且截留量最高，分別為 3.14 kg ha⁻¹ 3months⁻¹ 及 2.54 kg ha⁻¹ 3months⁻¹ 而台灣欅樹、紅楠、楓香則有淨吸收作用，分別為 1.19、1.19 及 0.33 kg ha⁻¹ 3months⁻¹；而水黃皮及無患子對 SO2 的截留量最高，分別為 3.08 及 2.73 kg ha⁻¹ 3months⁻¹，最低是楓香及紅楠分別為 0.94 及 0.38 kg ha⁻¹ 3months⁻¹。

五、參考文獻

金恆鈞、楊炳炎 (1984) 畢祿溪試驗集水區的降水及溪水化學。林試所試報告第 427 號。
金恆鈞、劉瓊霞、夏義九、黃正良 (2003) 福山天然闊葉林生態系對降水化學的交互作用台灣林業科學 18(4): 367-373。
范基南、李奇倉 (1996) 鄉土樹種之落塵截留量及抗性比較。抗空氣污染之鄉土樹種及草種之篩選。
高清 (1996) 酸雨破壞森林原因之探討。農政及農情 49 : 45-47。
孫嘉福、楊英賢、蔡瀛逸、劉明昭、賴文淙 (1996) 環境化學。高立圖書有限公司出