四種育苗方式對杉木及台灣杉苗木之耐水性反應

方榮坤 1) 廖天賜 1) 李丁松 2) 郭志誠 1)

【摘 要】

本試驗以穴植管、塑膠袋、砲床及土床等四種方式培育出之杉木及台灣杉苗木，於春、夏、冬等三季利用壓力箱（pressure chamber）測定之細胞壁弹性係數（E_{max}），所獲結果為：台灣杉之育苗，夏季以砲床培育者為佳，冬季則以砲床培育者為優，春季以砲床苗者較佳；杉木之育苗，夏季及冬季均以土床培育者為佳，春季則以土床培育為優。

【關鍵詞】
杉木、台灣杉、壓力箱、細胞彈性係數。

Responses on water tolerance of Cunninghamia lanceolata (lamb.) Hook. and Taiwania cryptomerioides Hayata seedlings cultivated by different nursery practises

Yung-Kuen Fang 1) Tian-Syh Liao 1),
Ten-Tsun Lee 2) Chih-Cheng Kuo 1)

1) 國立中興大學森林學系，台中市
Dept. Forestry National Chunghsing Univer. Taichung, Taiwan, R.O.C.

2) 國立嘉義農專森林科，嘉義市
Dept. Forestry National Chiayi Institute of Agriculture, Chiayi, Taiwan R.O.C.
【Abstract】

This experiment takes seedlings of *Cunninghamia lanceolata* (Lamb.) Hook and *Taiwania cryptomerioides* Hayata cultivated by dibbling-tube, plastic bag, sand bed and soil bed nursery practices as materials to measure the elasticity coefficient of cell wall with pressure chamber under each season, thus, spring, summer and winter. The results are summarized as follows: To cultivate seedlings of *Taiwania*, the cultivation best for summer season is growing with sand bed, for winter season is growing with sand bed, and for spring is growing with sand bed; To cultivate large-leaved china-fir, the best for summer and winter is growing with soil bed, then, for spring is growing with soil bed.

【Keywords】

Cunninghamia lanceikata (Lamb.) Hook. *Taiwania cryptomerioides* Hayata, pressure chamber, elasticity coefficient of cell wall.

一、前言：

苗木之生理特性對於苗木之成活與生長，殊具密切關係（高，1983；Barnett，1984；Cleary，1978）。而Ritchie（1984）則將苗木品質評估分爲苗木材料特性如芽休眠、水分生理狀態、礦物養分含量、酶類含量及類型、形態、生長激素、酶素，及生長表現性質如活力、根系生長、耐寒能力、苗

—62—
木溫度。因此，影響苗木品質之因子甚多，而彼此之間又具有不同之相關性（Duryea, 1985）。

水分為生物一切生理活動之基質，植物體細胞之延申及生長必先供給充足之水分，始能維持其膨脹作用（Turgidity），而細胞之膨脹作用為維持葉形、氣孔開放、葉瓣、花瓣及其他組織之運動所必需（王子定，1974）；水分供應之多寡為苗木生長之基本限制因子，且可能為其致死之因，經由水分管理可控制苗木之生長速度及對環境逆境之抗力（Kozlowski，1972；Levitt，1972）；植物體之水分生理狀態測試通常針對水勢（Water potential）來檢驗植物體是否遭受水分逆境之影響，利用壓力箱（Pressure chamber），則可測試植物體之滲透潛勢（Osmotic potential），而導出細胞質壁分離（Incipient plasmolysis）之植物體水勢（ψp），並據以判定植物體缺水之程度，以決定苗圃水分之供應情形（Cheung et al., 1975；Kandiko et al., 1980；Joly, 1985；Scholander et al., 1965）；由壓力箱所導出之植物水分壓力－容積曲線（Pressure-volume curve），可反映苗木之耐旱能力（Cheung et al., 1975；Kandiko et al., 1980）。

由於水分對植物之影響甚大，本文乃針對水分生理方面進行試驗研究，並選擇台灣杉及杉木，以塑膠袋、穴植管、土床及砂床等四種方式育苗，並測試不同生長季節P－V曲線之變化情形，據此分析不同育苗方式所培育出之苗木其耐旱能力之變化，以爲日後育苗及栽植造林之參考。

二、材料與方法：

(一)材料：

本試驗以杉木（Cunninghamia lanceolata）及台灣杉（Taiwania cryptomerioides）苗木為試驗材料，並以下列四種方式培育：

1. 土床（Soil bed）
2. 穴植管（Dibbling-tube container）
3. 砂床（Sand bed nursery）
4. 塑膠袋（Plastic bag container）

當苗木生長至二年生時，分別於春、夏、冬等三季，選取不同培育方式之苗木，其地際直徑及苗高為均勻者供試驗測定之材料。

(二)方法：

試驗用之苗木，先去除介質再清洗乾淨後將整株苗木置入塑膠袋中，其根系浸於水中使充分吸水至完全膨潤狀態，置於5℃之冰箱中12小時，以減低蒸散作用，每一處理隨機取樣，重複三次測定。
1. 壓力一容積曲線之測定：

受測苗木自冰箱中取出後，即以吸水紙吸乾莖、葉表面之水分，並自莖基剪斷，測鮮重至 0.1mg，再置於乾燥紙乾燥於槽壁並靜置約 40 分鐘之壓力槽內，並使先端斷面朝上，突出於壓力槽內，並使先端斷面朝上，突出於壓力槽蓋中孔外，蓋緊槽蓋後再以 0.01MPa/sec之速率，使用高壓N2氣體加壓，並以放大鏡仔細觀察植株斷面，待斷面出現水分時，記錄其壓力值，此值為與植株水勢平衡之逆壓力，並立即以一預先稱重至 0.1mg之內塞吸水紙之小塑料箝（內徑約 0.7cm、長 2.5cm），置於斷面上吸水，並昇高壓力至壓力至高於平衡點0.5MPa，其外並置以直徑 3cm高 4.5cm之透明塑膠筒，以減少蒸散之損失，10分鍾後取下塑膠筒秤重，以計算吸水之重量，同時減壓使莖基切面之水分回吸至恰有微量水分出現，記錄此新平衡點；此時之壓力即為組織因水分減少而昇高壓力之新平衡點，再依前法置一新塑膠管於切面上，重覆此步聚15—20次，直至每次吸水之水分減少且約略等量時為止；最後之壓力值經記錄後，釋放壓力，取出植株體，測量至0.1mg，比較植物體失水重量與吸水紙累積吸水重量，若誤差大於10％，此次試驗即為失敗，應廢棄之；若經確認為有者，即將植物體置於 110℃之烘箱中烘乾48hr以上，以求其絕乾重。

2. P—V曲線之導出：

以每一平衡壓力之倒數 (1/P) 為Y軸，每次吸水量之累積重量所佔總含水量之百分率為X軸繪圖；此曲線分為二部分，上半部為曲線，下半部為直線，此直線可依線性迴歸分析法求出，再以外插法求得X軸及Y軸之交點，曲線部分則以曲線尺直接繪出。
Reciprocal balance pressure

\[\psi'_w = \psi'_p + \psi'_\pi \]

\[\psi'_p = 0 \]

Reciprocal osmotic potential at full turgor (\(\psi \pi_0\))

Reciprocal osmotic potential at zero turgor (\(\psi z\))

Cumulative weight loss

圖1. 典型之壓力——容積曲線，曲線部分乃為植物體水勢 (\(\psi w\))，係由膨壓所產生之壓滲勢 (\(\psi p\)) 與滲透 潤勢 (\(\psi \pi\)) 之和，(\(\psi \pi\))。為以外插法所導出之植物 透於完全膨潤狀態時之滲透漏勢 (\(\psi \pi_0\)) 與膨 弾為零（即 \(\psi p = 0\)）時之滲透漏勢 (\(\psi z\))，而自完全膨 潤狀態之植物體滲透漏勢 (\(\psi \pi_0\)) 至原生質分離點之植物體 滲透漏勢 (\(\psi z\)) 二者之差，即為細胞壁彈 性係數 (\(\varepsilon_{max}\))，(Ritchie and Shula, 1984)。

\[\varepsilon_{max} = | \psi \pi_0 - \psi p | \]
三、結果

本試驗以不同育苗方式培育出之杉木及台灣杉苗木，於不同季節時測定之 ε_{max} 值，經進行變方析後，其結果列示如表 1 及表 2。

表 1. 杉木不同育苗方式於不同季節時苗木 ε_{max} 之變方分析

Table 1. Variance analysis of large-leaved China-fir seedlings for different treatment in three seasons

<table>
<thead>
<tr>
<th>育苗方式</th>
<th>季节</th>
<th>季节</th>
<th>季节</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>夏季</td>
<td>冬季</td>
<td>春季</td>
</tr>
<tr>
<td>穴植管</td>
<td>0.1213*</td>
<td>0.1146*</td>
<td>0.1416*</td>
</tr>
<tr>
<td>塑膠袋</td>
<td>0.1860*</td>
<td>0.1356*</td>
<td>0.1326*</td>
</tr>
<tr>
<td>砂床</td>
<td>0.1430*</td>
<td>0.1270*</td>
<td>0.1343*</td>
</tr>
<tr>
<td>土床</td>
<td>0.1893*</td>
<td>0.1480*</td>
<td>0.1786*</td>
</tr>
</tbody>
</table>

據表 1 之分析結果顯示，不同育苗試所培育出之杉木苗木，其 ε_{max} 於夏季及冬季均呈顯著差異，但春季則無顯著差異。
據表 1 之分析結果顯示，不同育苗方式所培育之杉木苗木，其 ε_{max} 於夏季及冬季均呈顯著差異，但春季則無顯著差異。

<table>
<thead>
<tr>
<th>育苗方式</th>
<th>夏</th>
<th>季</th>
<th>冬</th>
<th>季</th>
<th>春</th>
<th>季</th>
</tr>
</thead>
<tbody>
<tr>
<td>穴植</td>
<td>0.1436*</td>
<td>0.1613*</td>
<td>0.1403*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>膠袋</td>
<td>0.1453*</td>
<td>0.1400*</td>
<td>0.1406*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>砂床</td>
<td>0.1993*</td>
<td>0.1790*</td>
<td>0.2096*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土床</td>
<td>0.1873*</td>
<td>0.1516*</td>
<td>0.1210*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

據表 2 之分析結果顯示，不同育苗方式所培育之台灣杉苗木，其 ε_{max} 於夏季及春季均呈顯著差異，但冬季則無顯著差異。

四、結論：

當植物體完全膨潤時之植物體水勢 (ψ_{wo})，乃為植物體水勢 (ψ_{w}) 扣除膨脹 (ψ_{p}) 後之滲透勢值 (ψ_{i})，故可視為該植物體所含溶質之滲透挪威勢 (ψ_{s})，溶質滲透勢愈低，表示其溶質含量愈多，亦即光合作用產物減去新陳代謝消耗後之累積愈大（Cheung et al., 1975; Ritchie and Shula, 1984）。而 ε_{max} 爲細胞壁之彈性係數，彈性大之組織，其細胞較易伸展，有利於植物體之長大，且可容忍少量之失水而不致於失去膨脹而減低其光合作用效率（Joly and Zaerr, 1987）。

依本試驗結果，台灣杉之幼苗於夏季時，ε_{max} 值以砂床苗所測得者為最高，依次為土床苗、塑膠袋及穴植苗，砂床苗與土床苗，兩者之間無顯著差異，但砂床苗與穴植管及塑膠袋苗則呈顯著差異，而土床苗與穴植管苗及塑膠袋苗相互間亦呈顯著差異。由其細胞壁彈性係數 (ε_{max})，可得知砂床苗木於夏季時較可能忍受環境短期之水分逆境，而土床苗木亦為有利之材料，因其二者間並無顯著差異。
之差異存在。再以杉木言之，以土床苗木所測得之 E_{max} 值為最高，依次為塑膠袋苗、砂床苗及穴植
管苗，土床苗與塑膠袋苗兩者之間無顯著差異，但土床苗與砂床苗及穴植管苗，則顯著差異，塑膠
袋苗與砂床苗兩者之間無顯著差異，但塑膠袋苗則與穴植管苗兩者之間則顯著差異，砂床苗與穴植
管苗之間亦無顯著差異，由以上之分析，杉木之育苗以土床苗為較有利之作業方式。

以冬季之試驗結果，台灣杉之 E_{max} 值以砂床苗木所測得者較高，依次為穴植管苗、土床苗及塑
膠袋苗，但在四種育苗方式之間，並無顯著性差異存在，因此可謂在冬季時，四種處理方式所得之苗
木，其彈性係數 (E_{max}) 並無顯著差異。以杉木而言，此時台灣杉呈現生長休眠狀態，可
能是其細胞質濃度較高之緣故。而杉木則以土床苗木所測得之 E_{max} 值為最高，依次為塑膠袋苗、砂
床苗及穴植管苗，土床苗與塑膠袋苗、砂床苗，三者之間無顯著差異，但土床苗與穴植管苗兩者之間
具顯著性差異，而砂床苗、塑膠袋苗及穴植管苗，三者之間並無顯著差異。因此，杉木冬季之育苗應以土床為較佳之育苗方式。

春季時，台灣杉之細胞壁彈性係數 (E_{max})，以砂床苗為最高，依次為塑膠袋苗、穴植管苗，而
以土床苗所測得者為最低，塑膠袋苗、穴植管苗及土床苗三者之間無顯著差異，但此三者，則與砂床
苗具顯著差異。砂床苗可謂為最有利之作業方式。而杉木所測得之 E_{max} 值，以土床苗木，有較高之
趨勢，依次為穴植管苗、砂床苗及塑膠袋苗，但在四種育苗方式間並無顯著差異。

本試驗結果，就台灣杉而言，由表2細胞壁彈性係數 (E_{max})之長期變化，似以春季時採用砂床
育苗方式所得之苗木，較為有利。此點可與本省台灣杉之造林適期大都以春季為先（劉等，1979）相
互配合。再就杉木而言，更應配合雨季栽植，北部以12月至翌年3月均可，中部春有雨，可於1－3月
間行之。南部須5月後始降雨，應於6、7月為宜（劉等，1979）。由表1細胞彈性係數 (E_{max})之
長期變化得知，各季節均以土床育苗方式所培育之苗木，其 E_{max} 為最大，苗木栽植於林地後，受水
分逆境其抵抗力可能較大。

五、參考文獻：

1. 方榮坤1988 苗木品質評估之原理與法 中華林學季刊 21(1)：87-96.
2. 王子定1974 理論育林學（上）國立編譯館
4. 沈慈安1989 五種介質對紅橲等四種省產針葉樹穴植管苗初期生長及水分生理特性之影響 林業試
驗所研究報告季刊 4(1)：1-13.
5. 沈慈安、方榮坤、陳財輝、廖天赐1988 以二種介質培育之四種針葉樹1+0穴植管苗木之壓力—容
積曲線 中華林學季刊 21(3)：59-68.
6. 黃松根、楊吉雄1978 香杉及台灣杉優型苗選擇對成活及生長之效應 林試所研究報告308號
7. 黃松根、孫正春1986 杉木不同林分種子苗各種形質之變異 林試所研究報告469號
9. 郭幸榮1986 台灣杉苗木之種源及其重要生理性狀 台灣大學博士論文
10. 高清1983 苗木生理—速生苗之原理 台灣林業 9(3): 6-8
11. 劉行和、林文鎮、林維治1979 台灣經濟樹木育林學 國立中興大學

—69—

（民國八十年十二月二十九日收稿）