水分對楓香及烏心石苗木生長之影響(1)

廖天赐(2) 方榮坤(2) 郭志誠(2)

【摘要】本試驗以楓香(Liquidamber formosana)及烏心石(Michelia compressa)之2+1苗為材料，培育於1:1(泥炭土：蛭石)混合介質中，利用重量法控制介質含水量為其飽和含水量之80%、60%及40%，藉以測定對此二樹種苗木之苗高、地徑、生物量及葉面積與葉形態等生長性狀之影響；試驗結果摘要如下：1.二樹種之形態生長均以80%含水量狀態下最佳；2.乾物生產量亦以80%含水量之處理為最大，但楓香苗木受水分減少而降低乾物生產量之影響較為明顯；3.葉面積及葉形態顯示二樹種受水分之影響非常明顯。

【關鍵詞】水分含量，形態生長，乾物，葉面積，葉形態。

Effects of Water Content on the Growth of Liquidamber formosana and Michelia compressa Seedlings(1)

Tian-Syh Liao(2) Yung-Kuen Fang(2) Chih-Cheng Kuo(2)

【Abstract】Seedlings of 2+1 years old of Liquidamber formosana and Michelia compressa were used in this experiment. They were cultivated in mixed media of vermiculite and peat-moss by 1:1 ratio. Then water content in media were adjusted to 80%, 60% and 40% by weighing method, respectively. We measured the characteristics of seedling height growth, diameter growth, biomass, leaf area and leaf phenotype as effects of water content. The experimental results are summarized as followed: 1. The best phenotype growth of both two species is under 80% water content; 2. The greatest biomass is under 80% too. There is a clear decrease in biomass of Fragrant maple.

(1)本文為第三作者碩士論文之一部分。
This paper was a part of the M.S. thesis of the third author.

(2)國立中興大學森林系，臺中市。
Dept. of forestry, National Chung-Hsing Univ., Taichung, Taiwan, R.O.C.
水分的植物生长影响

一、前言

水分是植物维持生命所必须的基本物质，消耗水分的状况因植物种类不同而异。同一植物又因季节以及一日内天气变化，其消耗情形亦有所异，故理解各种植物吸水特性，可供作各种植物合理用水之参考（陈，1960）。植物生长之状态及环境因子皆影响植物体内水分之输送（陈及林，1978）。植物体每吸收1000克水，约有990克由蒸散作用消失于大气中，故须有足够能之水分供应，才能保持植物体之水分平衡。且蒸散作用受到气孔构造、密度，以及环境因子如光度、湿度、温度等条件所影响（林，1987），而吸水之季节变化乃由于受气温，尤以昼夜温差变化所表示的气候温差变化及日照量之影响（林，1979）。

植物体缺水之因，係由於过度之蒸散作用，形成组织内水分过度散失；或因植物体吸水能力降低，使其体内水分无法保持平衡。植物每日吸水作用达至最大发生之时间较气孔闭度最大之时间为缓，造成植物体内缺水週期之变化，此因素产生之缺水为短暂停的，对植物生长影响不大（陈及张，1981），但若由於土壤水分含量减少或土壤溶液浓度过高，造成根部吸水能力降低，对植物生长影响甚大（朱，1977）。

楤木（Liquidambar formosana）为台湾固有闊叶树种，树性强健为阳性树种，生长快速，产全岛山麓至海拔1,800m之森林，普遍栽培为经济林、景园树及行道树，乌心石（Michelia compressa）为台湾原生著名树种，与牛樟、檜木、臺灣檫树及乌柿合称台湾闊叶树五木，树性强健，为阳性～中性树，原生本省海拔200～2,000m之山地闊叶树林中，属闊叶树一级木（林，
1992)。不同樹種之苗木，對水分之需求及反應均異，其基礎資料之建立，乃為育苗作業及造林適地選種之重要依據，本試驗以二樹種之苗木為材料，進行長期水分控制，藉以瞭解二樹種苗木於不同水分含量處理下，其生長性狀對水分供給之反應，期能提供苗圃作業之參考。

二、試驗材料與方法

(一)試驗材料

供試之樹種為楓香(Liquidamber formosana)及烏心石(Michelia compressa)，分別為臺南縣政府農業局及林務局羅東林區管理處所培育之(2+1)苗木。

(二)試驗地:

國立中興大學森林系三樓溫室中進行，平均氣溫25.6°C；最高溫30.1°C；最低溫20.7°C；平均相對溫度79.3%(如圖1)。

![Graph showing temperature and humidity over months](image)

圖1. 1992年7月至12月試驗地之月平均溫度、月平均濕度

Fig 1. Monthly mean temperature and humidity of tested area from July to Dec., 1992

(三)容器及介質:

本試驗楓香採用高25cm內徑20cm之白色塑膠容器，烏心石採用高18cm內徑18cm之黑色塑膠容器；均採用1：1泥炭土—蛭石之混合介質。

(四)試驗設計與方法

1.試驗設計:

依重量法(林，1987)於八十一年三月上旬苗木植入容器前，將混合介質烘至絕乾重，楓香以
水分對楓香及烏心石苗木生長之影響

530g、烏心石以205g置入容器內，使其吸水至飽和狀態（沈，1989；吳，1991），再調整為40%、60%、80%等三種含水率之重量。取性狀一致之苗木植入容器後充分管理，自八十一一年七月起控制水分含量，每隔二日加水至預先設計之重量，為防止水分由介質表面蒸發，覆蓋以保麗龍板及未脫醋棉。

本試驗採完全隨機區集設計，分三種處理，每處理重複四次，每重複三株，並於每重複中備份三株，以供介質含水量之調整及破壞性試驗之用。

2. 測定項目及方法：

(1) 苗高：自八十一一年七月起，每個月各調查苗高一次，以計算其生長量。

(2) 地際直徑：自八十一一年七月起，每個月各調查地際直徑一次，以計算其生長量。

(3) 乾重及葉面積：於八十一一年九月及十二月下旬分別取各處理之苗木一株，稱取鮮重後將各部分（根、莖、葉）分離後，葉片以葉面積儀（LI-COR：LI-3000）測定葉面積，再置入70℃±5℃烘箱內烘至絕乾重。

(4) 葉面積比：由第三項測定全苗木之葉面積與全株苗木乾重，換算為葉面積比。

(5) 比葉面積：由第三項測定全苗木之葉面積與其葉乾重，換算為比葉面積。

三、結果與討論

(一) 形態生長量

經過介質不同水分含量處理後，楓香及烏心石苗高與地際直徑生長量之分析示如圖2、3。

苗木品質評估之形態參數有苗高、地際直徑、乾重、T/R比等，苗高及地際直徑與苗木之成活率及初期生長具顯著之正相關，乾重與地際直徑有高度相關，故亦與成活率及苗木初生長相關；而T/R比為預測成活率之指標（方等，1988）：根系之水分輸導能力與地際直徑及根乾重呈直線相關，即地際直徑愈大者，根系發育愈佳者，有利於水分之吸收及輸送，苗木對水分散失之耐力較佳，而地上部乾重與水分之輸導能力相關，即地上部發育愈旺盛，對水分之消耗量愈大（郭，1986）；莖部除具有支持機能外，尚扮演運送無機養分、水分及同化物質之角色，苗高降低將縮短水分運送途徑之垂直距離，而有利於水分之分布（Clarke and Durley, 1981）。

楓香及烏心石苗木之苗高及地際直徑總生長量，隨介質水分含量之增加而增加，顯示水分供給量之多寡為限制生長之一重要因素，此與林（1991）研究木麻黃、黃槿、草海桐之結果相似；再由各月份生長量之變化顯示（如圖2、3），隨著季節之轉變，植物逐漸進入休眠期，致使苗高及地際直徑生長量漸減緩，而由試驗初期之七月份氣溫為最高（平均氣溫為30.1℃），二樹種之苗高及地際直徑生長量均以80%區＞60%區＞40%區，顯示此時期光合作用旺盛，水分供給強烈的限制生長；而後因氣溫降低及日射量之減少，楓香苗木苗高及地際直徑生長量逐漸減緩，至九月份（平均氣溫降低1.7℃）處理間無顯著差異，惟烏心石苗木則至十月份（平均氣溫降低6.0℃）處理間無顯著差異，顯示楓香苗木生長對季節之感受較為靈敏，因而生長期較短，而烏心石苗木之感受較為遲緩，顯示生長期較長，故全試驗期之苗高及地際直徑總生長量之差異，係由於全生長期累計生長
之差異所致。

圖2. 楓香不同月份苗高及地際直徑生長量之變化(1992年7～12月)

Fig. 2. Monthly variation of seedling height and ground diameter growth of *Liquidambar formosana* (from July to Dec., 1992).

圖3. 鳥心石不同月份苗高及地際直徑生長量之變化(1992年7～12月)

Fig. 3. Monthly variation of seedling height and ground diameter growth of *Michelia compressa* (from July to Dec., 1992).

(二) 生物量

經不同水分含量處理後，楓香及鳥心石苗木生物量之變化如表1所示。

楓香及鳥心石苗木之莖、葉乾重及全株總乾重，以80%處理區為最大，顯示當水分供應充裕，苗木之吸水量及原貯存於薄壁細胞中之水分可滿足蒸散需求時，則地上部之積儲活性 (sink activity) 增強，以致於生長迅速之苗木，其碳水化合物除供應生長所需外，亦在葉、莖中積聚，導致乾重之增加。根系易受水分不足之影響而抑制生長，新根之形成與原有根系之延伸皆需碳水化合物之供應，因水分不足引起光合作用與輸導速率之衰退，致使根系生長減弱，由楓香及鳥心石苗木之根乾重以80%處理區為最大，顯示水分供給限制根系之生長，而由楓香苗木於九月份生長季期間80%處理區與60%處理區無顯著差異，惟至十二月份根重二者間呈顯著差異，顯示在高水分狀態，維持根系於低溫下之生長；再者，於試驗後期楓香根乾重隨著介質水分含量之降低。
而降低，處理間呈顯著差異，而烏心石苗木不論於九月份生長季期間或試驗後期80％處理區與60％區及40％區呈顯著差異，而60％區與40％區無顯著差異，顯示楓香苗木根系生長可能較易受水分之限制；此外，楓香苗木之莖、葉乾重於試驗後期顯示葉片介質水分含量之下降而降低，處理間顯著差異，惟烏心石苗木以80％處理區為最大，而於60％區及40％區無顯著差異，亦顯示楓香地上部分之生長，對水分供應之敏感性較大。

表 1. 不同水分處埋對生物量之影響

<table>
<thead>
<tr>
<th>樹種</th>
<th>月份</th>
<th>處理</th>
<th>葉乾重</th>
<th>菖乾重</th>
<th>根乾重</th>
<th>T/R 率</th>
<th>全株總乾重</th>
</tr>
</thead>
<tbody>
<tr>
<td>楓</td>
<td>九月</td>
<td>40%</td>
<td>6.40c* (33.2)**</td>
<td>19.00c (44.7)</td>
<td>17.36b (56.6)</td>
<td>1.46a (79.3)</td>
<td>42.76c (46.3)</td>
</tr>
<tr>
<td></td>
<td>60%</td>
<td>15.30b (79.5)</td>
<td>30.53b (71.9)</td>
<td>29.00a (94.5)</td>
<td>1.91a (103)</td>
<td>74.90b (81.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80%</td>
<td>19.23a (100)</td>
<td>42.43a (100)</td>
<td>30.66a (100)</td>
<td>1.84a (100)</td>
<td>92.33a (100)</td>
<td></td>
</tr>
<tr>
<td>十二月</td>
<td>40%</td>
<td>1.86c (21.6)</td>
<td>23.96c (42.1)</td>
<td>21.60c (45.5)</td>
<td>1.17b (68.0)</td>
<td>47.43c (36.6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60%</td>
<td>8.60b (34.1)</td>
<td>39.56b (69.2)</td>
<td>35.13b (74.0)</td>
<td>1.36b (79.0)</td>
<td>83.36b (64.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80%</td>
<td>25.16a (100)</td>
<td>56.80a (100)</td>
<td>47.43a (100)</td>
<td>1.72a (100)</td>
<td>129.40a (100)</td>
<td></td>
</tr>
<tr>
<td>鳥</td>
<td>九月</td>
<td>40%</td>
<td>0.73c (17.8)</td>
<td>4.83b (59.4)</td>
<td>3.43b (41.8)</td>
<td>1.67a (112)</td>
<td>9.00b (69.6)</td>
</tr>
<tr>
<td></td>
<td>60%</td>
<td>2.36b (57.5)</td>
<td>5.16b (63.4)</td>
<td>4.33b (52.8)</td>
<td>1.92a (128)</td>
<td>11.86b (58.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80%</td>
<td>4.10a (100)</td>
<td>8.13a (100)</td>
<td>8.20a (100)</td>
<td>1.49a (100)</td>
<td>20.43a (100)</td>
<td></td>
</tr>
<tr>
<td>心</td>
<td>十二月</td>
<td>40%</td>
<td>1.03a (11.4)</td>
<td>6.20b (40.7)</td>
<td>4.10b (43.6)</td>
<td>1.81a (70.4)</td>
<td>11.36b (33.7)</td>
</tr>
<tr>
<td></td>
<td>60%</td>
<td>1.77b (19.6)</td>
<td>6.43b (42.3)</td>
<td>4.33b (46.0)</td>
<td>1.91a (74.3)</td>
<td>12.53b (37.2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80%</td>
<td>9.03a (100)</td>
<td>15.20a (100)</td>
<td>9.40a (100)</td>
<td>2.57a (100)</td>
<td>33.63a (100)</td>
<td></td>
</tr>
</tbody>
</table>

*數值後之英文字母為鄧氏方檢定之結果，不同字母表示差異顯著(P=0.05)。
**括號內之數值為以80％處理區為100之百分比指數，以下各表同。

葉身率(Top--Root ratio：T/R)為苗木地上部分與地下部分之平衡狀況，亦表示苗木之蒸散面積與吸水平積之比率(吳，1991)。水分供給不足時，不但減少植物乾物質之累積，同時亦改變同化
產物對各器官之分配比；而地上部葉、果子所受之生理影響較地下部為嚴重，致使地上部與地下部
之比值減小，此為植物體對乾旱環境之適應性反應。烏心石苗木最枝率於試驗初期及後期三處理
間均無顯著差異，係由於地上部(葉、果)乾重及地下部(根)乾重，隨著介質水分含量之降低而減緩
所造成之結果：楓香苗木於試驗後期最枝率以80%處理區最大與60%區及40%區呈顯著差異，再
由地下部(根)乾重隨著介質水分含量之降低而下降，其最枝率隨著介質水分含量減少而降低之因，
係由於地上部生長受水分供給之大幅影響，導致地上部乾重大幅減少所致。兩樹種最枝率所表現
之趨勢，烏心石隨著介質水分含量之減少處理間無顯著差異，楓香則呈下降，此現象表示楓香對
乾燥環境之反應較烏心石為敏銳，其地上部之生長以停滯甚至休眠(落葉)，以度過乾旱逆境。

(三)葉面積與葉形態

楓香、烏心石不同水分含量處理後葉面積與葉形態變化如表2所示：

植物體於缺水環境，以落葉方式改變本身之特性，藉以抵抗水分不足之威脅，而生長所受之
影響較大，葉片之生長有明顯之減退現象(Boyce，1970；Acevedo et al.，1979；林等，
1985)。楓香及烏心石苗木於九月份及十二月份測定之結果，單株葉面積均隨著介質水分含量之減
少而降低，依序為60%區＞40%區＞40%區，此與林(1991)研究防風林植物對水分應力之反應所
得之結果相似，其性可能係由於抑制細胞之增大或細胞分裂，以致葉片生長受阻，或以落葉方式
之形態改變，形成葉面積之減少(Acevedo et al., 1979; McCree and Davis, 1974)。

葉片形態之變化可由比葉面積(Specific Leaf Area; SLA)及葉面積比(Leaf Area Ratio;
LAR)二方面加以探討；比葉面積之大小可說明葉片之薄厚，而葉片薄者對於氣體交換之阻抗較
小，有利光合作用之進行(Kwesiga and Grance，1986)。葉面積比數值較大者，表示單位重量
內可進行光合作用之葉面積較大，而減少呼吸消耗，提高淨光合率(翁，1989)。楓香及烏心石苗
木比葉面積於十二月測定結果，楓香以40%處理區為最大與60%及80%處理區呈顯著差異，顯示
楓香苗木形成較薄之葉片，根據廖(1987)研究大豆水分代謝中指出：長期缺水條件下，葉面積減
少，且葉片變薄，其因可能為葉肉細胞長期受水分不足之影響，及缺水導致礦物元素供應不足，
致使生長受阻，故葉片變薄。雖可能有利於光合作用之進行，惟因單株葉面積隨介質水分含量之
減少而降低，其單株總光合成率可能亦受到水分不足之影響。葉面積比二樹種均以80%處理區為
最高，顯示當水分供應充足時，葉面積大，碳素合成能力大，有助提高淨光合率。

四、結論

由試驗之結果歸納所得之結論為：

1. 楓香及烏心石二樹種苗木之形態生長均以80%含水量狀態下最佳。

2. 乾物生產量亦以80%含水量之處理為最大，但楓香苗木受水分減少而降低乾物生產量之影響
 較為明顯。

3. 葉面積及葉形態顯示二樹種受水分之影響非常明顯，即随水分降低而減少。
表 2. 不同水分處理對葉面積及葉形態之影響
Table 2. Effects of varied water contents on leaf area and leaf phenotype.

<table>
<thead>
<tr>
<th>樹種</th>
<th>月份</th>
<th>處理</th>
<th>單株葉面積 (cm²)</th>
<th>比葉面積 (cm²/g)</th>
<th>葉面積比 (cm²/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>楓</td>
<td>九</td>
<td>40%</td>
<td>1668.96<sup>c</sup> (36.6)</td>
<td>262.41<sup>a</sup> (110)</td>
<td>39.02<sup>c</sup> (79.1)</td>
</tr>
<tr>
<td></td>
<td>60%</td>
<td>4273.24<sup>b</sup> (93.9)</td>
<td>279.04<sup>a</sup> (117)</td>
<td>57.04<sup>a</sup> (115)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80%</td>
<td>4550.50<sup>a</sup> (100)</td>
<td>237.05<sup>a</sup> (100)</td>
<td>49.29<sup>b</sup> (100)</td>
<td></td>
</tr>
<tr>
<td>十二月</td>
<td>40%</td>
<td>792.36<sup>c</sup> (16.0)</td>
<td>442.25<sup>a</sup> (224)</td>
<td>16.67<sup>b</sup> (43.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60%</td>
<td>1900.58<sup>b</sup> (38.5)</td>
<td>222.21<sup>b</sup> (112)</td>
<td>22.89<sup>b</sup> (59.7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80%</td>
<td>4935.06<sup>a</sup> (100)</td>
<td>197.21<sup>b</sup> (100)</td>
<td>38.28<sup>a</sup> (100)</td>
<td></td>
</tr>
<tr>
<td>木</td>
<td>九</td>
<td>40%</td>
<td>86.24<sup>c</sup> (15.8)</td>
<td>135.07<sup>a</sup> (62.3)</td>
<td>9.57<sup>b</sup> (19.2)</td>
</tr>
<tr>
<td></td>
<td>60%</td>
<td>544.18<sup>b</sup> (61.2)</td>
<td>232.96<sup>a</sup> (107)</td>
<td>45.88<sup>a</sup> (92.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80%</td>
<td>889.13<sup>a</sup> (100)</td>
<td>216.80<sup>a</sup> (100)</td>
<td>49.60<sup>a</sup> (100)</td>
<td></td>
</tr>
<tr>
<td>十二月</td>
<td>40%</td>
<td>195.47<sup>c</sup> (10.1)</td>
<td>190.82<sup>a</sup> (89.5)</td>
<td>17.51<sup>c</sup> (30.6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60%</td>
<td>363.57<sup>b</sup> (18.8)</td>
<td>210.80<sup>a</sup> (98.8)</td>
<td>29.09<sup>b</sup> (50.8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80%</td>
<td>1923.80<sup>a</sup> (100)</td>
<td>213.19<sup>a</sup> (100)</td>
<td>57.22<sup>a</sup> (100)</td>
<td></td>
</tr>
</tbody>
</table>

五、參考文獻
方榮坤、沈慈安、廖天賜 1988 苗木品質評估之原理與方法 中華林學季刊 21(1)87-96
朱德民 1977 植物缺水之生理反應 科學農業 25(1-2)6-13
林文鎮 1979 臺灣泡桐之造林研究 興大實驗林研究報告第178號
林文鎮 1992 臺灣名花木解說 中華林學叢刊926號
林信輝 1991 風風林植物對水分應力之反應性 興大水土保持學報 23:25-48
林信輝 1987 三種防風植物在海岸環境下之生理生態反應 興大植物學研究所博士論文
林信輝、李遠欽、陳清義 1985 草海桐對水分之反應性 中華林學季刊 18(3):17-32

黃明得 1990 乾旱對落花生生產量之影響 臺灣雜糧作物之生產概況及趨勢 科學農業雜誌社編 PP115-119

吳銘銘 1991 植木與黃連木之吸水特性試驗 興大森林學研究所碩士論文

翁仁憲 1989 溫度對蔬菜光合作用及呼吸作用之影響 第二屆設施園藝研討會專集 PP209-217

陳清義 1960 植物吸水特性之研究 農林學報第九輯 PP126-146

陳清義、林文鍾 1978 水分對迪生樹種增產之效果一臺灣泡桐及油桐之吸水、蒸散、氣孔開閉習性及水量之研究 興大理工學報 15:33-47

陳清義、張杏生 1981 胡蜀黍水分生理特性之研究 興大理工學報 18:1-14

陳清義、蔡智賢 1985 草莓對缺水之生理反應 夏季蔬菜生產改進研討會專輯 PP139-182

郭幸榮 1986 臺灣杉苗木之種源及其重要生理性狀 臺大森林學研究所博士論文

張峻德 1972 臺灣主要林木水分生理之研究—臺灣赤楊、棟樹、榔榆及臺灣白澀樹苗木之吸水特性 中華林學季刊 5(2):61-80

張新維、王玉麒 1985 大豆品種間生育特性與抗旱性關係之研究 中華農學會報(新)132:57-75

廖松淵 1987 大豆水分代謝、氣孔特性及組織構造之生理生態與解剖學研究 興大植物學研究所博士論文

Ritchie, S.W., H.T. Nguyen and A.S. Holaday 1990 Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance. Crop Sci. 30:105-111

Zahner, R. 1962 Terminal growth and wood formation by juvenile loblolly pine under two soil moisture regimes. For. Sci. 8:345-352